Modified hybrid decomposition of the augmented Lagrangian method with larger step size for three-block separable convex programming
نویسندگان
چکیده
منابع مشابه
On Full Jacobian Decomposition of the Augmented Lagrangian Method for Separable Convex Programming
The augmented Lagrangian method (ALM) is a benchmark for solving a convex minimization model with linear constraints. We consider the special case where the objective is the sum of m functions without coupled variables. For solving this separable convex minimization model, it is usually required to decompose the ALM subproblem at each iteration into m smaller subproblems, each of which only inv...
متن کاملProximal ADMM with larger step size for two-block separable convex programs
The alternating direction method of multipliers (ADMM) is a benchmark for solving two-block separable convex programs, and it finds more and more applications in many areas. However, as other first-order methods, ADMM also suffers from low convergence. In this paper, to accelerate the convergence of ADMM, we relax the restriction region of the Fortin and Glowinski’s constant γ in ADMM from (0, ...
متن کاملAn interior-point Lagrangian decomposition method for separable convex optimization
In this paper we propose a distributed algorithm for solving large-scale separable convex problems using Lagrangian dual decomposition and the interior-point framework. By adding self-concordant barrier terms to the ordinary Lagrangian we prove under mild assumptions that the corresponding family of augmented dual functions is self-concordant. This makes it possible to efficiently use the Newto...
متن کاملAn Augmented Lagrangian Method for Conic Convex Programming
We propose a new first-order augmented Lagrangian algorithm ALCC for solving convex conic programs of the form min { ρ(x) + γ(x) : Ax− b ∈ K, x ∈ χ } , where ρ : Rn → R ∪ {+∞}, γ : Rn → R are closed, convex functions, and γ has a Lipschitz continuous gradient, A ∈ Rm×n, K ⊂ Rm is a closed convex cone, and χ ⊂ dom(ρ) is a “simple” convex compact set such that optimization problems of the form mi...
متن کاملSeparable Approximations and Decomposition Methods for the Augmented Lagrangian
In this paper we study decomposition methods based on separable approximations for minimizing the augmented Lagrangian. In particular, we study and compare the Diagonal Quadratic Approximation Method (DQAM) of Mulvey and Ruszczyński [13] and the Parallel Coordinate Descent Method (PCDM) of Richtárik and Takáč [23]. We show that the two methods are equivalent for feasibility problems up to the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2018
ISSN: 1029-242X
DOI: 10.1186/s13660-018-1863-z